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ABSTRACT

Summary: The Visual DSD (DNA Strand Displacement) tool
allows rapid prototyping and analysis of computational devices
implemented using DNA strand displacement, in a convenient web-
based graphical interface. It is an implementation of the DSD
programming language and compiler described by Lakin et al. (2011)
with additional features such as support for polymers of unbounded
length. It also supports stochastic and deterministic simulation,
construction of continuous-time Markov chains and various export
formats which allow models to be analysed using third-party tools.

Availability: Visual DSD is available as a web-based Silverlight
application for most major browsers on Windows and Mac OS X
at http://research.microsoft.com/dna. It can be installed locally for
offline use. Command-line versions for Windows, Mac OS X and
Linux are also available from the web page.

Contact: aphillip@microsoft.com

Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

Novel techniques for designing and manipulating synthetic DNA
are making it possible to construct increasingly sophisticated
biological computation devices. One such technique is DNA strand
displacement (Seelig er al., 2006; Zhang and Seelig, 2011) in
which hybridization between complementary DNA strands is the
sole computational mechanism. Designing novel biomolecular
computing devices has practical benefits as well as offering
fundamental insights into understanding life as biomolecular
information processing. As these devices increase in complexity, it
becomes intractable to calculate the low-level interactions between
the DNA species by hand. Thus, one of the main barriers to continued
progress in this nascent field is the lack of automation and abstraction
in the design process. Visual DSD implements a domain-specific
language whose syntax is tailored to allow concise encodings of
the species in a DSD system. The DSD programming language
is described in (Lakin er al., 2011; Phillips and Cardelli, 2009).
The system automatically computes all possible reactions between
the species, providing the benefits of a reaction-based approach
without the difficulty of manually constructing the reaction network.
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The user can choose an appropriate level of abstraction in the
compilation process, from low-level detailed views to higher level
simplified views. The design can then be visualized and analyzed
to eliminate any unwanted behaviour. Visual DSD provides suitable
analysis tools both for large-scale designs involving many thousands
of formal and intermediate species, such as DNA logic gates
(Qian and Winfree, 2011), and for systems involving low species
populations, such as DNA implementations of stack machines (Qian
et al., 2010).

2 METHODS AND IMPLEMENTATION
2.1 Encoding systems

Program code is entered using the syntax from Lakin et al. (2011), as
shown on the left-hand side of Figure 1. Our domain-specific language
for DNA strand displacement includes support for parameterized modules
which can be instantiated multiple times in a program. This encourages
good software engineering practices such as code reuse and modular design.
Settings which are specific to a particular system, such as the default reaction
rates and the populations to plot during a simulation, are specified within the
program code. More general settings, such as whether to use a stochastic or
deterministic simulation, are selected through the graphical user interface.
Input programs are checked for type safety and well-formedness of the DNA
species before being passed to the compiler, though some of these checks
can be disabled to allow rapid development of programs. The tool includes a
variety of example programs and an integrated tutorial. A manual is available
on the web page that contains a formal definition of the syntax.

2.2 Compilation, simulation and analysis

Visual DSD implements the compilation scheme outlined in Lakin et al.
(2011), with an extension to support reactions which form DNA polymers.
The user interface offers a selection of semantic rules, which formalize
the possible interactions between the DNA species with varying levels of
detail. This provides a great deal of flexibility. Visual DSD includes a
stochastic simulator that uses the Gillespie algorithm (Gillespie, 1977) to
generate trajectories when the entire chemical reaction network has been
pre-computed. There is also a deterministic simulator that uses the Runge-
Kutta-Fehlberg method (Fehlberg, 1969) to solve an ordinary differential
equation model. For systems where the chemical reaction network is very
large (or infinite, in the case of polymer systems), there is a just-in-time
compiler which allows the reaction network to be computed incrementally as
needed during a stochastic simulation (Paulevé et al., 2010). This can produce
significant performance gains in certain situations. The tool can also construct
and visualize the continuous-time Markov chain of a (sufficiently small)
system, which is particularly useful for low-level debugging of individual
circuit components.
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Fig. 1. Screenshot of the Visual DSD tool, with the code entry box on the left and the output tabs on the right. Along the top of the screen there are options to
select example programs, adjust the semantics and control the simulator. The example shown implements a simple transducer gate. The Compilation tab on
the right-hand side displays output from the compiler, in this case a visualization of all the individual reactions. The Simulation tab shows time-course plots
and data tables from stochastic and deterministic simulations, and the Analysis tab shows various representations of the continuous-time Markov chain.

2.3 Visualization and export

Visual DSD offers numerous visualizations of the DNA species in the
system, using the graphical notation introduced in Lakin et al. (2011). These
range from the structure of the individual DNA species through pictorial
representations of individual reactions (as shown on the right-hand side
of Fig. 1) to a graph-based visualization of the entire chemical reaction
network or continuous-time Markov chain. Simulation results are plotted as
line graphs of species populations over time. Simple arithmetic functions on
populations can also be plotted. The tool can also output nucleotide sequences
as a starting point for construction of the systems.

Data and models can be exported from Visual DSD in a variety of formats.
Chemical reaction networks can be exported to SBML (Hucka et al., 2003)
and the time series data from simulations can be saved in CSV format for
loading into a spreadsheet. Continuous-time Markov chains can be exported
as a model for the PRISM probabilistic model checker (Hinton et al., 2006).
The user can then express system properties as temporal logic formulae and
verify them using stochastic model checking (Kwiatkowska et al., 2007).
PRISM can also perform detailed quantitative analysis of reaction kinetics.
Examples queries include the probability of reaching a given state within
a particular time, or the probability of reaching an undesirable state due to
interference between DNA strands.

3 DISCUSSION

Visual DSD has been used to model and analyse a wide range
of DNA strand displacement devices, including logic gates (Qian
and Winfree, 2011), neural network computation (Qian er al.,
2011), fork and join gates (Cardelli, 2010), oscillators (Lakin e? al.,
2011) and a range of other devices including catalytic gates and
schemes for simulating arbitrary chemical systems (Phillips and
Cardelli, 2009). Note that secondary structures such as hairpin,
pseudoknot and multiloop junctions are not currently supported;
however, some of these structures, including hairpins, are currently
under development for a future release. We have found that the tool
is particularly beneficial when designing new systems from scratch,
as the visualizations make it easy to debug programs. Support for
reusable modules in program code makes it quick and easy to
construct new, larger systems using pre-designed components. The
tool embodies the scientific workflow and can increase efficiency

and productivity of DNA device design and analysis by allowing
users to simulate systems before attempting to build them in the
lab, thereby saving time and lab resources. It also enables in silico
investigation of the behaviour of systems that are beyond the current
state of the art in fabrication, such as particularly large and/or
complex systems. Furthermore, once a design has been formalized in
the DSD language it becomes possible to perform formal verification
of certain aspects of its behaviour, for example using a stochastic
model checker or a theorem prover. We are continually developing
the software and adding new features.
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